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Introduction

The population of earth will increase to 9 billion by 2050, 
35 % more than today. To produce the food needed by this 
larger population, cereal production should increase to 
60 % relative to today. This was estimated to consist of a 
77 % increase in developing countries and a 24 % increase 
in developed countries [2]. Changes in agricultural strat-
egies and techniques will be needed, but the challenge is 
great and all options for improving yield, including chemi-
cal pesticides and fertilizers as well as alternative options 
need to be utilized to the fullest to meet this global demand 
for food. However, critics have warned since 1958 that 
widespread use of pesticides in agriculture causes adverse 
effects on wildlife, useful insects and human health [17]. 
Some of these potential local and global adverse effects of 
agricultural chemicals are evident today and may include 
loss of species diversity [143]. Chemical pesticides and fer-
tilizers, when used responsibly, can be part of sustainable 
development, however, the paradigm of sustainable devel-
opment can prompt researchers to consider alternatives to 
the established chemical strategies for facilitating plant 
growth in agriculture, horticulture and silviculture toward 
assured agricultural purposes [40].

There has been a sustainable relationship between plant 
growth-promoting bacteria (PGPB) and plants during the 
billion years of evolution and PGPB are associated with 
nearly all plant species studied so far. Regarding to the vast 
distribution of actinobacterial genera among PGPB and 
high abundance of these bacteria in soil (107–108 per g−l) 
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compared to other bacteria (108–109per  g−l) [92] and the 
importance of ecophysiological concept of PGPB, here we 
review plant growth-promoting actinobacteria (PGPA) as 
members of Actinobacteria which have beneficial associa-
tion with plants.

This review summarizes mechanisms of action of free-
living or endophytic PGPA, their taxonomical distribution 
and potential of their recruitment in biological enhance-
ment of agricultural crops.

Biology of actinobacteria

The class “Actinobacteria” is well-supported by analyses 
of the 16S and 23S rRNA genes, presence of conserved 
insertions and deletions in certain proteins, and charac-
teristic gene rearrangements [83]. At the time of writing 
this review, this class is one of the largest taxonomic units 
within the domain Bacteria including 15 orders, 57 fami-
lies and more than 300 genera. Among these 15 orders, 
Actinomycetales (commonly called actinomycetes) often 
have filamentous life cycle [83]. Among the widely diverse 
microbial taxa, actinobacteria are the most prolific source 
for production of bioactive metabolites including herbi-
cides, fungicides and biofertilizers.

Actinobacteria are Gram positive or Gram stain vari-
able, aerobes, facultative anaerobes or anaerobes. Most 
are chemoorganotrophs and have rigid cell wall containing 
muramic acids or teichoic acids. Growth at neutral pH and 
ambient temperature is common, but some are acidophiles, 
alkaophiles or halophiles or thermophiles. Most are sap-
rophytic, but a few are pathogenic to plants and animals. 
Phenotypically, they are diverse organisms from cocci to 
highly differentiated mycelia. Actinobacteria are widely 
distributed in aquatic and terrestrial habitats. The genome 
of actinobacteria vary in size from 0.93  Mb (Tropheryma 
whipplei) [144] to 12.7 Mb (Streptomyces rapamycinicus) 
[8]. The natural product-rich actinobacteria generally have 
large genomes of >5  Mb which contain large contiguous 
secondary metabolite gene clusters (at a typical length of 
20–150  kbp) each genome contains more than 20 sets of 
putative biosynthetic genes for secondary metabolites [19]. 
This genetic potential makes actinobacteria potent produc-
ers of secondary metabolites with a vast spectrum of differ-
ent biological activities which are applicable to agriculture 
and industry.

A prominent characteristic of using actinobacteria as 
PGPB is that phytopathogenic actinomycetes constitute 
only a minority of plant-associated actinobacteria which 
include Streptomyces scabies, Streptomyces acidiscabies, 
Streptomyces turgidiscabies, Streptomyces ipomoeae caus-
ing common scab diseases [80] and Rhodococcus fascians 
that cause leafy gall [91].

Members of actinobacterial taxa which are regarded 
as PGPA have been isolated from various sections of 
plants, such as root, tubers, seeds and leaves which their 
study as growth influencing agents is of vital importance. 
Also, they are useful to investigate the PGPA compounds 
because of their potential as a source of agroactive com-
pounds that may aid in growth enhancement or preven-
tion of plant diseases. In addition to the inoculation of 
PGPA cells or spores to plant, its seed or surrounding 
soil, agroactive metabolites of PGPA also can be for-
mulated as natural pesticides or alternatives of chemical 
fertilizers.

Actinobacteria as plant colonizers

Bacteria which colonize plant surfaces in competitive 
conditions of natural habitats in soil are considered true 
colonists. Actinorhizal plants comprise around 200 plant 
species belonging to 25 genera in eight families [18]. Act-
inobacteria may establish compact or tight associations as 
it is exemplified by rhizospheric or endophytic actinobac-
teria. Despite their different ecological niches, free-living 
and endophytic bacteria use similar mechanisms to pro-
mote plant growth [122].

Ectophytic colonizers

There is a symbiotic relationship between microbial 
residents in rhizosphere and their host plants. The plant 
roots excrete various chemical attractants in rhizosphere, 
including organic acids, amino acids and specific car-
bohydrates. Some exudates can be effective as antimi-
crobial agents and thus give ecological niche advantage. 
The quantity and composition of chemoattractants and 
antimicrobials exuded by plant roots are under genetic 
and environmental control [7]. PGPA detected from the 
rhizospheric habitats include Streptomyces, Thermobifida, 
Microbispora, Saccharopolyspora, Nocardia and Kitasat-
ospora [37].

Phythohormones or related substances of actinobacterial 
origin may take part in the infection and nodulation pro-
cess of nodule-forming species. Actinomycetes-inoculated 
Ochetophila trinervis have effected higher development 
of dense zones of root hairs than control plants without 
inoculation or with Frankia alone. This may be induced by 
changes in the primary plant cell wall structure by helper 
rhizoactinomycetes [117].

Strains from Streptomyces rochei and Streptomyces ther-
molilacinus which were isolated from wheat rhizosphere 
showed high PGP activities and soil enzyme production 
capability which led to an increase of 12.2–24.5 % in shoot 
length and 1.8–2.3-fold in biomass of wheat [57].
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Endophytic colonizers

It is estimated that each of the nearly 300,000 plant species 
on earth host endophytic bacteria [121]. Many of rhizobac-
teria including actinobacteria can cross from the root cortex 
to the vascular system, and subsequently thrive as endo-
phytes in stem, leaves, tubers, and other organs [44]. Colo-
nization may also originate from other part of plant such as 
phyllosphere, anthosphere or spermosphere [47]. Majority 
of endophytic actinomycetes have been isolated from roots 
rather than other organs. Most of the reported actinomycetes 
belong to Streptomyces genus. Members of Microbispora 
spp. were isolated more frequently from plant leaves than 
soil. It is plausible that endophytic actinomycetes adhere 
firmly to the host plant surfaces and acquire the nutrition 
from host surfaces using extracellular polymers containing 
adhesive compounds and hydrolytic enzymes [113].

Pteridic acids A and B have been found from endophytic 
Streptomyces hygroscopicus TP-A0451 isolated from a 
stem of bracken, Pteridium aquilinum [51]. Pteridic acid 
A promoted the root elongation of rice and induced the 
adventitious root formation of the kidney bean hypocotyls 
as effectively as indole acetic acid (IAA).

Two endophytic Streptomyces isolates recovered from 
a stress-tolerant dicotyledenous plant Artemisia annua L. 
showed protection against agronomic diseases mediated by 
S. scabies. It was revealed that these strains do not produce 
thaxtomin A and activate the salicylic acid (SA)-mediated 
plant defense responses upon pathogen challenge. Moreo-
ver, defense deficiency in eds5 gene (enhanced disease sus-
ceptibility) which is at the upstream of SA accumulation 
in the signaling pathway of systemic acquired resistance 
(SAR) can be compensated by the salicylic acid produced 
by these Streptomyces strains [80].

Endophytic actinobacteria from the genus Pseudono-
cardia effectively stimulate certain plant defense responses 
and increased production of artemisinin (anti-malarial com-
pound) by up-regulation of cytochrome P450 oxidoreduc-
tase [76]. Due to the typical trace amount production of 
artemicin, inoculation of Artemisia annua with endophytic 
PGPA is of significant potential economic value [76].

Endophytic strains of Actinoplanes campanulatus, 
Micromonospora chalcea and Streptomyces spiralis indi-
vidually or in combination promote cucumber growth. 
Internal tissues of roots, stems and leaves can be colonized 
by these species which persist up to 8 weeks after seedling 
inoculation. These strains also reduce seedling damping-off 
and crown rots of cucumber (Cucumis sativus) by Pythium 
aphanidermatum [31].

Micomorphology of Frankia strains have the same 
appearance in soil as in culture, i.e. hyphae, sporangia with 
spores and vesicles (under low environmental nitrogen). 
Hyphae are always present in root nodules and vesicles are 

found in nodules of all studied genera as well except Casu-
arina and Allocasuarina. Vesicle shape and size, presence 
or absence of septa in vesicles, and the spatial distribution 
of vesicles within an infected plant cell differ among sym-
bionts and are varied by the host [18].

Symbiont‑Actinobacteria specificity

Bacteria commonly enter plant tissues via stomata, wounds, 
lenticels, projecting areas of lateral roots, and broken tri-
chomes by forming cell aggregates. Most of actinobacteria, 
however, form branching hyphae that grow on plant sur-
faces and enter their host plants through natural (stomatal) 
openings and mechanical and insect wounds [113].

Symbiont-actinobacteria specificity is observed in some 
bacterial-plant relationships. An individual strain may 
excert growth enhancing effects on some plants while 
inhibiting growth of some others. To begin with, the inter-
action between PGPA species and their plant symbionts 
appears to be specific, even within a crop or cultivar [40].

Phylogenetic diversity of PGPA

Proteobacteria and actinobacteria form the most common 
of the dominant populations found in the rhizosphere of 
many different plant species [115]. Actinobacteria belong-
ing to taxonomically diverse genera (Table 1) are isolated 
from different plant hosts. Strains within the following 33 
genera of bacteria are described for their plant growth pro-
moting traits: Acetobacter, Acinetobacter, Agrobacterium, 
Alcaligenes, Allorhizobium, Azoarcus, Azorhizobium, Azos-
pirillum, Azotobacter, Bacillus, Beijerinckia, Bradyrhizo-
bium, Burkholderia, Caulobacter, Chromobacterium, 
Delftia, Derxia, Enterobacter, Erwinia, Flavobacterium, 
Gluconoacetobacter, Herbaspirillum, Klebsiella, Mes-
orhizobium, Ochrobactrum, Pantoae, Paenibacillus, Pseu-
domonas, Seropedicea, Serratia, Stenotrophomonas, Xan-
thomonas and Zoogloea. At the time of writing this review, 
around 52 genera of agroactive PGPA have been reported 
(Table 1). As seen, PGPA are detected among member of 
all Actinobacteria (12 orders) other than Bifidobacteriales, 
Catenulisporales and Propionibacteriales. Among reported 
plant-associated species, Streptomyces spp. has been the 
most predominant species followed by the Microbispora, 
Micromonospora, Nocardioides, Nocardia and Streptospo-
rangium [100].

Regulation of plant metabolism

Rhizospheric and soil actinobacteria have been shown to 
produce various phytohormones. They also can regulate 
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Table 1   Taxonomic distribution 
of reported PGPA

Family Genera Host plants Reference

Streptomycetaceae Streptomyces Maytenus Austroyunnanensis
Sedum sp.
Artemisia annua
Alnus nepalensis
Triticum aestivum

[20]
[75]
[146]
[81]
[23]

Streptoverticillium Oryza sativa [126]

Kitasatospora Triticum aestivum [23]

Tsukamurellaceae Tsukamurella Triticum aestivum
Maytenus austroyunnanensis

[23]
[97]

Intrasporangiaceae Janibacter Cucumis melo [141]

Streptosporangiaceae Herbidospora Osyris wightiana [73]

Nonomuraea Artemisia annua
Maytenus austroyunnanensis

[148]
[101]

Actinophytocola Oryza sativa [54]

Pseudonocardiaceae Amycolatopsis Dendranthema indicum [138]

Saccharopolyspora Tripterygium hypoglaucum
Gloriosa superba
Maytenus austroyunnanensis

[74]
[95]
[99]

Kibdelosporangium Heterospathe sp.
Pandanus sp.

[56]

Pseudonocardia Jatropha curcas
Artemisia annua
Eucalyptus microcarpa
Maytenus austroyunnanensis
Lobelia clavata
Acacia auriculiformis
Oroxylum indicum

[104]
[144]
[60] [63]
[103]
[21]
[30]
[45]

Streptoalloteichus Dendranthema indicum [138]

Glycomycetaceae Glycomyces Sambucus adnata
Scoparia dulcis
Maytenus austroyunnanensis

[46]
[94]

Micromonosporaceae Actinoplanes Triticum aestivum [23]

Catellatospora Castanea sativa
Corylus avellana
Equisetum arvense

[38]

Dactylosporangium Tripterygium wilfordii [38]

Plantactinospora Maytenus austroyunnanensis [38]

Polymorphospora Bruguiera gymnorrhiza
Sonneratia alba

[38]

Jishengella Acanthus illicifolius [38]

Phytomonospora Artemisia annua [38]

Phytohabitans Orchid [38]

Micromonospora Pisum sativum
Lupinus angustifolius
Pisum sativum
Tulbaghia violacea

[38]
[129]
[38]
[65]

Cellulomonadaceae Oerskovia Ginkgo sp. [64]

Nocardiaceae Rhodococcus Cercidiphyllum Japonicum
Artemisia annua

[70]
[147]

Gordonia Maytenus austroyunnanensis [97]

Nocardia Jatropha curcas
Callitris preissii

[139]
[62]

Geodermatophilaceae Blastococcus Cercidiphyllum japonicum [70]

Microbacteriaceae Leifsonia Ginseng sp. [105]
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level of phytohormones production in plants or degrade 
phytohormones. Current information of actinobacterial 
phytohormones and their effects on plants are summarized 
in Table 2. There are a number of examples on regulation 
of phytohormones by PGPA. In vitro treatment of winter 
rye seeds with auxin producing endophytic actinobacte-
ria increased the germination capacity and enhanced an 
intensive seedling growth [85]. An increased availability 
of growth regulators produced by applying Streptomyces 
spp. as a seed-coating has been shown to improve tomato 
growth. Streptomyces olivaceoviridis and Streptomyces 
rochei produce substantial amounts of growth-regulating 
substances, including auxins, gibberellins and cytokinins 
which increase the shoot length and shoot fresh mass, 
respectively [1]. The supernatant of Micromonospora sp. 
MM18 was shown to have a definite positive effect on 
plant growth and evidence suggested that the supernatant 
contains IAA and gibberellic acid (GA) at the level of 
autoregulation of nodulation [116]. The culture filtrates of  

S. olivaceoviridis enhance spikelet number, spike length 
and mass of the developing grain of wheat plants. This 
activity attributed to increase in bioavailable auxins (IAA), 
as well as gibberellins and cytokinins which are produced 
by the bacterium [85]. 

Enhancement of nutrient availability

Actinorhiza have great impact on mineralization and mobi-
lization of nutrients required for plant growth as well as 
production of vitamins and other growth factors and pro-
moting mycorrhizal function.

Nitrogen fixation

Endophytic PGPA such as Frankia species can improve 
the growth of their plant host by fixation of nitrogen. 
Enzymatic conversion of molecular nitrogen to ammonia 

Table 1   continued Family Genera Host plants Reference

Thermomonosporaceae Actinoallomurus Oryza sativa
Acacia auriculiformis

[55]
[125]

Actinocorallia Duranta repens
Millettia reticulata

[97]

Actinomadura Maytenus austroyunnanensis [102]

Nocardiopsaceae Nocardiopsis Maytenus austroyunnanensis [97]

Nocardioidaceae Nocardioides Carex scabrifolia Steud [119]

Kribbella Pittosporum angustifolium [64]

Flindersiella Eucalyptus microcarpa [61]

Mycobacteriaceae Mycobacterium Triticum aestivum
Paris yunnanensis

[23]
[97]

Microbacteriaceae Microbacterium Triticum aestivum
Maytenus austroyunnanensis

[23]
[97]

Promicromonosporaceae Promicromonospora Maytenus austroyunnanensis [96]

Dietziaceae Dietzia Cercidiphyllum japonicum
Schima sp.

[77]

Micrococcaceae Arthrobacter Triticum aestivum [23]

Micrococcus Polyspora axillaris
Aquilaria sinensis

[145]
[22]

Actinosynemmataceae Lechevalieria Triticum aestivum [23]

Lentzea Triticum aestivum [23]

Kineosporiaceae Kineosporia Tripterygium wilfordii [71]

Kineococcus Limonium sinense [12]

Streptosporangiaceae Herbidospora Osyris wightiana [78]

Microbispora Alpinia galangal
Triticum aestivum

[123]
[19]

Planotetraspora Not specified [56]

Streptosporangium Maytenus austroyunnanensis
Orchid

[97]
[53]

Sphaerisporangium Oryza sativa [86]

Nonomuraea Maytenus austroyunnanensis
Artemisia annua

[96]
[72]
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is catalyzed by nitrogenase, an oxygenlabile enzyme 
complex highly conserved in free-living and symbiotic 
diazotrophs.

Frankia is characterized by a slow growth rate and for-
mation of vesicles and spores which are developmental 
structures for survival in environment. Vesicles are the site 
for actinorhizal nitrogen fixation, while spores contained 
in multilocular sporangia are the reproductive structures of 
Frankia.

Nitrogenase (nifH) genes are also detected in non-
Frankia symbiont actinobacteria, including Thermomono-
sporaceae and Micromonosporaceae families, which are 
isolated from Casuarina equisetifolia root [132]. In another 
study, it was observed that Micromonospora sp. promotes 
both the Discaria trinervis-Frankia [116] and the Med-
icago sativa-Sinorhizobium meliloti nitrogen-fixing sym-
bioses by producing IAA and GA [118]. Other actinobac-
teria in addition to Micromonospora also stimulate alfalfa 

Table 2   Phytohormones metabolites produced or modulated by plant symbiotic actinobacteria

* Actinobacteria can stimulate its degradation

Hormone Structure Functions in plant [81] Actinobacterial producer or 
modulator

References

Indole-3-acetic acid (Auxin) Stimulates seed and tuber 
germination, initiates lateral 
and adventitious root formation; 
affects biosynthesis of 
metabolites

Micromonospora, Streptomyces
Frankia

[117] [49]

Brassinolide Increase content of chlorophyll, 
stimulate protein synthesis, 
activate certain enzymes and 
regulate cellular differentiation

Streptomyces [85]

Salicylic acid Induce SAR, prolong life of 
flowers, inhibit ethylene 
biosynthesis, and facilitate 
pollination of certain plants

Streptomyces [80]

Cytokinins Key role in plant morphology, 
leaf senescence and source–sink 
relationships, key regulators of 
the plant growth-defence

Micromonospora, Streptomyces, 
Actinoplanes

[111]

Jasmonic acid Induce ISR against necrotrophs, 
activates Phylloptosis, tuber for-
mation, fruit ripening, and  
pigment formation

Streptomyces [85]

Gibberellins Stimulate stem elongation by 
stimulating cell division and 
elongation. Stimulates bolting/
flowering

Micromonospora, Frankia, 
Actinoplanes

[117]
[87]

Serotonin (5-hydroxytryptamine) Structural analog of auxins. Plant 
metabolize serotonin to IAA

Streptomyces [130]

Abscisic acid (ABA) Phylloptosis, closure of stomata 
and aging

Streptomyces [6]

Ethylene Disrupts geotropism, promotes 
phylloptosis, and accelerates

Fruit maturation and aging

* [39]
[1]
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nodule formation, even in the presence of abundant inor-
ganic nitrogen in soil [49].

Biosynthesis of metal chelators

Actinobacteria produce siderophores to facilitate iron 
uptake by binding to Fe3+ from the environment. Sidero-
phores have various chemical structures and form a fam-
ily of at least 500 different compounds. The most prevalent 
structural groups include catechols (shch as in streptobactin 
from Streptomyces spp.) and hydroxamate (such as desfer-
rioxamine from S.coelicolor and amychelin from Amyco-
latopsis) [135].

Some PGPA can produce siderophoric compounds that 
can deprive pathogenic fungi by their higher affinity for 
iron while some may draw iron from heterologous sidero-
phores produced by cohabiting microorganisms [82].

Phosphorus solubilization

Being a critical macronutrient for plant growth and devel-
opment, most part of the total soil phosphorus is unavail-
able for uptake due to rapid immobilization by soil organic 
and inorganic components [59]. Among the several poten-
tial mechanisms for phosphate solubilization those involv-
ing the production of chelating compounds, like organic 
acids or by means of a modification of pH are the more 
often described [107]. In addition to solubilizing the bound 
phosphorus to soil particles, microorganisms are able to 
mineralize organic phosphorus and release soluble inor-
ganic phosphate into soil by decomposition of phosphate-
rich organic compounds [3].

The secretion of organic acids from plant roots enhances 
phosphorus availability by chelating cations such as Fe+2, 
Al+3 or Ca+2, which form insoluble phytates and also helps 
in the solubilization of insoluble phytates. Actinobacteria 
can hydrolyze phytate (which constitutes up to 60  % of 
soil organic phosphorus) by secreting phosphatases such as 
phytases and acidic/alkaline phosphatases [114]. Phosphate 
solubilization by Micromonospora endolithica is reported 
in growth promotion of beans (Phaseolus vulgaris L.) [33].

Antagonism of PGPA against phytopathogens

Phytopathogens can be categorized to major and minor 
pathogens, which kill or suppress the growth of their hosts, 
respectively. Actinobacteria, not only support their host 
plant indirectly, they can also directly antagonize phy-
topathogens as biocontrol agents. Actinobacteria have high 
capacity to produce antimicrobial agents, siderophores, 
hydrolytic or detoxifying enzymes and therefore can 
directly antagonize phytopathogens. Also, they can cope 

indirectly with phytopathogens by supporting the growth 
of host plants by their competition with phytopathogens for 
iron acquisition, nutrients, minerals and colonization site. 
These strategies are especially useful for minor pathogens, 
which reduced plant growth without distinct symptoms. 
Symbiotic actinobacteria inhibit growth of minor phy-
topathogens. For example, applications of Streptomyces 
lydicus WYEC 108 as a soil mix are expected to control 
Fusarium, Rhizoctonia, Pythium, Phytophthora, Phytoma-
totricum, Aphanomyces, Monosprascus, Armillaria, Scle-
rotinia, Postia, Verticillium, Geotrichum, and other root 
decay fungi [127, 131, 142] and it is marketed as an anti-
fungal agent for greenhouses, nurseries, turf grasses, and 
agricultural use sites [35, 48, 79]. It was also shown that 
endophytic actinobacteria, including Actinoplanes cam-
panulatus, Micromonospora chalcea and Streptomyces spi-
ralis reduce seedling damping-off, and root and crown rots 
of mature cucumber (Cucumis sativus) caused by Pythium 
aphanidermatum, S. spiralis produces IAA, GA, indole-3- 
pyruvic acid (IPYA), and isopentenyl adenine (iPa), A. 
campanulatus produces IAA, IPYA, and GA, whilst M. 
chalcea produced only IAA and IPYA [32].

PGP activity of some strains of Streptomyces having 
biological control activity against chickpea wilt caused by 
Fusarium oxysporum f. sp. ciceri was shown effective in 
the greenhouse on sorghum [42]. In the rice field, Strepto-
myces strains significantly enhanced tiller numbers, panicle 
numbers, filled grain numbers, weight stover yield, grain 
yield, total dry matter and root length, volume and dry 
weight, over the control. In the rhizosphere soil, the PGPA 
significantly enhanced microbial biomass carbon, total 
nitrogen, dehydrogenase activity, available phosphorous 
and amount of organic carbon over the control [42, 43].

Stimulation of immune responses in plants by PGPA

Immunity response of plant cells can be stimulated by 
entrance of phytopatogenic actinobacteria. Signal transduc-
tion system of the host plant can recognize the phytopath-
ogens in contaminated cell(s) and triggers other cells of 
the plant to express defense genes and induce systematic 
resistance (ISR). Cell components of phytopathogens have 
important roles in ISR. Also, when a pathogen induces 
a hypersensitive reaction, systemic acquired resistance 
(SAR) activates in plants to limit the infection to a local 
necrotic lesion.

ISR is associated with an increase in sensitivity to jas-
monate and ethylene hormones (JA/ET) in plants [40]. The 
endophytic actinobacteria appeared to be able to “prime” 
both the SAR and JA/ET pathways (Fig. 1). Upon diverse 
pathogen challenge, either, the SAR or JA/ET pathway 
was triggered in the Micromonospora-inoculated roots 
leading to greater host resistance [49]. Streptomyces 
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padanus-colonized plants induced expression of proteins 
or enzymes that functioned directly in defense or stress 
response classes of glutathione S-transferase, although 
endochitinases were exclusively suppressed [84].

Antibiotic production as principle function of PGPA

Kasugamycin, from Streptomyces kasugaensis, is widely 
used in Japan for the control of rice blast, which is caused 
by Pyricularia oryzae Cavara and has also been shown 
effective in control of bacterial fire blight [93]. Polyoxin 
B and D produced by Streptomyces cacaoi var. asoensis 
can inhibit chitin synthase. Polyoxin B is applied against 
a number of fungal pathogens in fruits, vegetables and 
ornamentals and Polyoxin D is marketed as Endorse™ for 
controling rice sheath blight caused by Rhizoctonia solani 
[26]. Validamycin A isolated from Streptomyces sp. affects 
on invertebrates is an inhibitor of trehalase [88]. Mildio-
mycin, from Streptoverticillium rimofaciens, is active 
against several powdery mildews on various crops and 
acts as an inhibitor of the fungal protein biosynthesis [36]. 
Mycostop™ is a biofungicide that contains Streptomyces 
griseoviridis as the active ingredient. S. griseoviridis strain 
K61 which colonize specific plant rhizosphere is used in 
root dipping or growth nutrient treatment of flowers, potted 
plants, greenhouse cucumbers and various other vegetables 
[35, 66]. Production of geldanamycin by Streptomyces viol-
aceusniger YCED9 [10] and S. hygroscopicus was effective 

in protection of lettuce and potato against P. ultimum and 
scab, respectively [128].

A number of secondary metabolites of actinobacteria 
which are involved in interaction with plants or phytopath-
ogens cannot be produced in axenic conditions in the lab. 
The value of co-cultivating different organisms to find 
novel compounds is undisputed [111]. Recent studies show 
that activation of dormant gene clusters in actinobacteria 
and other microorganisms can be assessed by co-culturing. 
It is shown that metabolites of Streptomyces sp. were able 
to induce biosynthesis of 0polyketides including orsellinic 
acid, lecanoric acid, cathepsin K inhibitors, S-9775A and 
S-9775B in Aspergillus nidulans [112].

Enzyme producing PGPA as biocontrol agents

Actinobacteria have high potential in enzyme production in 
which some are used as biocontrol agents. These enzymes 
can degrade or detoxify virulence factors of phytopatho-
gens. Examples of the best characterized defense enzymes 
are peroxidases, polyphenol oxidases and phenylalanine 
ammonia-lyases [68]. Some actinobacteria produce extra-
cellular enzymes such as chitinase, glucanases and per-
oxidases which can affect the cell walls of fungal hyphae, 
e.g. Streptomyces lydicus WYEC108 is capable of destroy-
ing germinating oospores of Pythium ultimum [24]. This 
strain is commercialized as Actinovate® which causes plant 
growth promotion even in the absence of pathogen. Antag-
onistic Streptomyces isolates against Fusarium oxysporum 
produced hydrocyanic acid and showed activity against 
Rhizoctonia bataticola (dry root rot and sorghum disease) 
[41].

Micromonospora carbonaceae isolate can lyse, via 
cellulase production, the cell walls of Phytophthora cin-
namomi, a pathogen that causes root rot. Moreover, a syn-
ergism was observed when the cellulase-producing M. car-
bonaceae was co-inoculated with the antibiotic producing 
Streptomyces violascens in that more of the fungal hyphae 
were degraded [34].

Thaxtomin A is a dipeptide phytotoxin produced by the 
plant pathogen S. scabies. It is a potent inhibitor of cellu-
lose biosynthesis and triggers the release of cello-oligosac-
charides from expanding plant tissue.

Thaxtomin A can be degraded by some members of the 
actinomycetes and they protected growing potato plants 
against common scab [29]. Alkaline protease inhibitors, 
as a novel class of antifungal proteins are reported among 
metabolites of Streptomyces species. They can inhibit 
the fungal serine alkaline protease as it was used against 
phytopathogenic fungi such as Altenaria, Fusarium and 
Rhizoctonia by this mechanism [134].

Biotransformation of fomannoxin, a fungal phy-
totoxin, by soil actinobacteria is also reported. 

Fig. 1   Induced systematic resistance (ISR) and systematic acquired 
resistance (SAR) mechanisms in relation to interaction with PGPA. 
Adapted from Van Loon et al. [133]
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Streptomyces-mediated modulation of spruce infection 
with Heterobasidion abietinum 331 does not depend on 
the availability of fomannoxin and some soil Streptomyces 
isolates were able to change fomannoxin to its three new 
derivatives without phytotoxic activity [50].

Most bacterial plant pathogens rely upon autoinducer-
mediated quorum-sensing to turn on gene cascades for their 
key virulence factors (e.g, cell-degrading enzymes and phy-
totoxins). Certain PGPB quench pathogen quorum-sensing 
capacity by degrading autoinducer signals, thereby block-
ing expression of numerous virulence genes [89]. Degrada-
tion of signaling molecules led to lack of biofilm formation 
by pathogenic or growth-retarding bacteria.

Alleviation of environmental stresses

Drought, high temperature, radiation, heavy metals and 
other toxic pollutants, damage and wound by insects, 
other invertebrates and phytopathogens are important 
environmental stresses for plants. Actinobacteria can 
reduce biotic and abiotic stresses by regulation of phyto-
hormones and increasing plant growth. For example, IAA 
biosynthesis is related to environmental stress, including 
acidic pH, osmotic and matrix stresses and carbon limita-
tion [120].

Ethylene is also a stress hormone which can exacer-
bate some of the symptoms of the stresses or it can lead to 
responses that enhance plant survival under adverse condi-
tions by transcription of genes encoding defensive proteins 
[40]. Ethylene is also required to break seed dormancy but, 
following germination, a sustained high level of ethylene 
may inhibit root elongation. PGPA bounded to the seed coat 
of a developing seedling may reduce the ethylene level by 
producing 1-aminocyclopropane-1-carboxylic acid (ACC) 
deaminase to the point where root growth has occured [39]. 
Deaminase production is also reported for Kibdelosporan-
gium phytohabitans isolated from the oil-seed medicinal 
plant Jatropha curcas L. which adjusts levels of ethylene 
during climacteric fruit development and damage during 
stress responses [58, 137].

Drought-tolerant endophytic actinomycetes of S. coe-
licolor, S. olivaceus and S. geysiriensis which are isolated 
from plants in arid and drought regions can enhance the 
intrinsic water stress tolerance of plants from −0.05 to 
−0.73 MPa by production of IAA phytohormones [140].

Beside altering bioavailability of metals, secondary 
metabolites of PGPA can sequester the heavy metals in 
rhizosphere. The hydroxamate siderophores contained in 
culture filtrates of S. acidiscabies E13 promotes Cowpea 
growth under nickel contamination by binding iron and 
nickel, thus playing a dual role of sourcing iron for plant 
use and protecting against nickel toxicity [27].

Competition between pathogens and PGPB can limit 
disease incidence and severity. PGPA and abundant PGPB 
rapidly colonize plant surfaces and use most of the avail-
able nutrients, making it difficult for pathogens or growth-
retardant strains to colonize. PGPB can contribute to 
ecological fitness by ameliorating crop abiotic stresses 
(particularly decreased water and nutrient availability) 
which sustain crop yields despite decreased nutrient and 
water inputs [40]. Bacterial modulation of phytohormone 
status promotes root growth, increasing access to soil mois-
ture [28].

Improving the soil texture

Implementation of agricultural chemicals including fertiliz-
ers and pesticides caused a rapid increase in the productivity 
of agricultural products in a short course, but lead to negative 
impact on soil texture and quality in long term of their appli-
cation during decades. Many of chemical fertilizers are pro-
duced from fossil fuels; therefore their using can deplete non-
renewable energy. Other adverse effects of chemical fertilizers 
are erosion of soil, damaging natural flora and biodiversity, 
making the crop more susceptible to the attack of diseases and 
reducing the soil fertility [3]. It was shown that higher organic 
matter caused more water retention. A bare land with poor 
soil structure and poor soil fertility cannot effectively support 
plant growth. Prohibition of chemical use and implementation 
of biopesticdies results in more organic matter that increase 
yields for farms in drought years, when organic farms have 
had yields 20–40  % higher than their conventional counter-
parts [143]. Microbial cooperation in the rhizosphere reflects 
the formation and stabilization of soil aggregates where in 
soil particles are held together by bacterial products followed 
by hyphae of filamentous actinobacteria which form stable 
microaggregates of size 2–20 µm diameters [9].

Field implementation of PGPA

Treatments of plants with PGPA include drench application 
[4] and seed bacterization [67], seedling treatment [5], biofor-
mulation, biopreparation, spray on the folia and a combination 
of these treatments [69]. Field-tested formulations, mostly 
based on dry powder (charcoal, lignite, farmyard manure, etc.) 
have inherent problems of appropriate shelf-life and cell via-
bility. Peat [108] or biodegradable gel matrices [110] at seed 
sowing may enhance bacterial survival in the rhizosphere [28].

Despite a number of bacteria which are used commer-
cially as adjuncts to agricultural practice, only a few strains 
of actinobacteria such as Streptomyces griseoviridis and 
Streptomyces lydicus are developed as commercial biofer-
tilizers. A number of issues for commercializing the PGPB 
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strains need to be addressed, including (1) determination of 
most important traits for efficacious functioning and subse-
quent selection of PGPB strains with appropriate biologi-
cal activities; (2) consistency among regulatory agencies in 
different countries regarding which strains can be released 
to the environment; (3) concluding the advantages and dis-
advantages of using rhizospheric versus endophytic strains; 
(4) selection of PGPB strains that have optimal function 
under extreme or specific environmental conditions; (5) 
development of more effective means of applying PGPB 
to plants in various settings (e.g., in the field versus in the 
greenhouse) and (6) understanding the potential interac-
tions between PGPB and mycorrhizae and other soil fungi 
[40]. Commercially developed PGP products from actino-
bacteria are shown in Table 3.

PGPA versus other PGPB

Strong colonization [66], production of resistant spores to 
irradiation, heat and drought [140] are among other advan-
tageous traits of PGPA towards other PGPB. Actinobacte-
ria may convert plant exudates into a form that can be used 
by another PGPB in rhizosphere. Some PGPA species have 
appeared to promote plant growth by acting both as biofer-
tilizers and biopesticides. Unlike the adverse effect of the 
continuous use of chemical fertilizers, PGPA when applied 
to the soil improve the soil structure because of their fila-
mentous biomass.

One of the advantages of PGPA over other PGPB is that 
a number of PGPB have emerged as opportunistic human 
pathogens. Some members of the plant-associated genera 

including, Burkholderia, Enterobacter, Herbaspirillum, 
Ochrobactrum, Pseudomonas, Serratia, Staphylococ-
cus, and Stenotrophomonas can enter into interaction with 
humans [11].

Future perspective of PGPA and concluding remarks

Integrated pest management (IPM) are based on two 
important principles in modern agriculture: (1) increasing 
the productivity of agriculture to provide food needed for 
increasing world population and (2) confining environ-
mental destruction to the lowest possible level. The aim of 
IPM is not eradication of pest; it is reducing their number 
at level with less economic effects [143]. Chemical pesti-
cides and fertilizers can meet IPM aims when properly 
used; however, misuse can have various adverse effects 
[3]. Considering PGPA as natural antagonists of pests and 
phytopathogens, high potential to promote the growth of 
agricultural plants, a member of ecosystems and biological 
resources are driving forces for replacing chemical pesti-
cides with PGPA.

Although phytoprotection using symbiont actinomy-
cetes is widely discussed, extensive field experiments are 
required to investigate the involved mechanisms and con-
sequences of cocultivation or inoculation of PGPA. Popula-
tion dynamics, metabolic activity and spatial distribution of 
PGPA in field can be investigated by bioluminescent gene 
transformation approach. Evidence for the horizontal trans-
fer of a pathogenicity island carrying the virulence gene is 
considered as a related risk of implementation of actinobac-
teria for biocontrol [16]. Effect of introduced actinobacteria 

Table 3   Commercially developed PGP products from actinobacteria. Adapted from Palaniyandi et al., 2013 [90] and Rezzonico et al. [106]

Commercialized product Bioactive actinobacterium or their metabolites Application

Actinovate® AG/Actinovate® SP Streptomyces lydicus WYEC108 Plant growth promotion and fungicide

Micro108® soluble/Micro108® Seed Inoculant Streptomyces lydicus WYEC108 Plant growth promotion

Actino-Iron® Streptomyces lydicus WYEC108 Plant growth promotion and fungicide

Thatch Control Streptomyces violaceusniger strain YCED 9 Fungicide and nematocide

Mycostop® Streptomyces griseoviridis strain K61 Fungicide

YAN TEN Streptomyces saraceticus Streptomyces saraceticus KH400 Fungicide

AFFIRMWDG Polyoxin D (Streptomyces cacoi var. asoensis) Fungicide

PH-D® Fungicide Polyoxin D (Streptomyces cacoi var. asoensis) Fungicide

Keystrepto™ Streptomycin (Steptomyces griseus) Bactericide

Agri-Mycin 17 WP Streptomycin (Steptomyces sp.) Bactericide

Strepto Streptomycin (Steptomyces griseus) Bactericide

Plantomycin WG Streptomycin (Steptomyces griseus) Bactericide

Ag-Streptomycin Streptomycin (Steptomyces griseus) Bactericide

Kasumin™ Kasugamycin (Streptomyces kasugaensis) Bactericide

Biomycin Kasugamycin (Streptomyces kasugaensis) Fungicide and bactericide

Omycin Kasugamycin (Streptomyces kasugaensis) Fungicide and bactericide
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on non-target plants, animals and microorganisms has also 
to be evaluated.

More progress in identification and diversity of PGPA 
along with their colonization ability and mechanism of 
action will facilitate their application as a component in 
the management of sustainable agricultural system. There-
fore, diversity of commercial PGPA formulations for plant 
growth and protection will increase in future.
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